主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司
王运涛, 孟德虹, 孙岩, 等. 带支撑装置的CRM-WBH模型流固耦合数值模拟[J]. 气体物理, 2019, 4(1): 16-22. DOI: 10.19527/j.cnki.2096-1642.0697
引用本文: 王运涛, 孟德虹, 孙岩, 等. 带支撑装置的CRM-WBH模型流固耦合数值模拟[J]. 气体物理, 2019, 4(1): 16-22. DOI: 10.19527/j.cnki.2096-1642.0697
WANG Yun-tao, MENG De-hong, SUN Yan, et al. Fluid-Structure-Coupling Simulation of CRM-WBH Model with Support System[J]. PHYSICS OF GASES, 2019, 4(1): 16-22. DOI: 10.19527/j.cnki.2096-1642.0697
Citation: WANG Yun-tao, MENG De-hong, SUN Yan, et al. Fluid-Structure-Coupling Simulation of CRM-WBH Model with Support System[J]. PHYSICS OF GASES, 2019, 4(1): 16-22. DOI: 10.19527/j.cnki.2096-1642.0697

带支撑装置的CRM-WBH模型流固耦合数值模拟

Fluid-Structure-Coupling Simulation of CRM-WBH Model with Support System

  • 摘要: 共同研究模型(common research model,CRM)机翼/机身/平尾组合体构型(CRM-WBH)是第4届AIAA阻力预测研讨会(Drag Prediction Workshop IV,DPW IV)选择的基准构型,DPW IV会议的统计分析结果显示计算结果与试验结果之间存在显著差异.采用CFD方法和流固耦合方法数值模拟了带支撑装置的CRM机翼/机身/平尾组合体模型(CRM-WBHS)的气动特性,主要目的是评估支撑装置和静气动弹性变形对CRM-WBH模型气动特性数值模拟结果的影响.通过与CRM-WBH模型CFD数值模拟结果和欧洲ETW风洞(European Transonic Wind Tunnel)测力、测压和模型变形测量结果的对比分析,表明模型支撑装置导致机翼上翼面激波位置前移,升力系数、阻力系数下降,俯仰力矩系数增加;静气动弹性变形主要影响机翼上表面激波位置和外翼处激波位置前负压,导致升力系数、阻力系数进一步下降,俯仰力矩系数进一步增加.CRM-WBHS模型的流固耦合数值模拟结果更加接近试验结果.

     

    Abstract: Common research model(CRM) wing-body-horizontal tail configuration was the reference geometry selected by 4th AIAA Drag Prediction Workshop (DPW IV). The statistical analysis of the numerical results from DPW IV illustrates obvious difference between experimental data and computational data. Aerodynamic characteristics of CRM wing-body-tail configuration with support system (CRM-WBHS) were simulated with CFD method and fluid-structure-coupling (FSC) method to assess the influence of support system and static aeroelastic deformation on the aerodynamic characteristics of CRM wing-body-tail configuration (CRM-WBH). Compared with the CFD results of CRM-WBH model and the experimental data from European Transonic Wind Tunnel (ETW), the CFD numerical results of CRM-WBHS model show that the support system moves the shock wave upward on the wing upper surface, decreases the lift coefficients, drag coefficients and increases the pitching moment coefficient. The FSC numerical results of CRM-WBHS model show that static aeroelastic deformation mainly affects the shock wave position on the wing upper surface, decreases the negative pressure coefficients obviously before the shock wave on the outward part of the wing, and further decreases the lift coefficients, drag coefficients and increases the pitching moment coefficient. FSC numerical results of CRM-WBHS model are more closely matched the experimental results.

     

/

返回文章
返回